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Both Carr-Purcell-Meiboom-Gill (CPMG) measurements and single-spin-echo measurements have
been made at frequencies of v=10, 20, and 50 MHz for two relatively homogeneous porous porcelain
materials with different pore sizes, both saturated separately with three liquids of different diffusion
coefficients. The CPMG transverse relaxation rate is increased by an amount R by diffusion in the inho-
mogeneous fields caused by susceptibility differences y; R shows the dependence on 7 (half the echo spac-
ing) given by the model of Brown and Fantazzini [Phys. Rev. B 47, 14 823 (1993)] if relaxation is slow
enough that there are several CPMG echoes in a transverse relaxation time. For 7 values over a range of
a factor of about 40, the increase of R with 7 is nearly linear, with a slope that is independent of pore di-
mension @ and diffusion coefficient D. For this nearly linear region and a short initial region quadratic in
7, we find R « (yv)?. In these regions we can scale and compare measurements of R taken for different
values of x v, a, and D by plotting RD /( %Xva )2 vs D7/a% The asymptotic values of R for large 7 for
CPMG data can be inferred from the asymptotic slope, —R;, of InM (magnetization) for single spin
echoes as a function of echo time ¢t =27. It is shown from the Bloch-Torrey equations for NMR with
diffusion that, for any combination of parameters x, v, @, or D, the magnetization M is a function of both
a dimensionless time (either z, =Dt /a® or t,— ;xvt) and a dimensionless parameter £=Lyva?/D. If
£ <2 (for our particular porous media and definition of the distance a), the asymptotic slope of —InM is
approximately R, = %)(v, that is, it is proportional to only the first power of yv and does not depend on
either @ or D. These results are compatible with the existence of a long-tailed distribution of phases,
such as a truncated Cauchy distribution, at echo time. Diffusion does not lead to a reduction of R be-
cause averages of choices from a Cauchy distribution give the same distribution rather than a narrower
one as for the Gaussian distribution. For larger & the decay of InM decreases and no longer approaches
a linear asymptote during measurement times. A semiempirical expression for the large-£ case is given.
These scaling laws should help in predicting the effects of changes in frequency and of susceptibility con-
trast as well as of changes in temperature, fluid, or range of pore sizes or other characteristic dimensions.
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PACS number(s): 47.55.Mh, 66.10. —x, 76.60.Lz, 76.60.Es

I. INTRODUCTION

As is well known [1], measurements of the transverse
relaxation time T, are affected by diffusion if inhomo-
geneous magnetic fields are present. Carr-Purcell-
Meiboom-Gill [2,3] (CPMG) measurements can reduce
the effects of diffusion on T',, but the results depend on 7,
half the echo spacing. When the fields are inhomogene-
ous over sample or instrument dimensions, it is often pos-
sible to make 7 short enough to substantially eliminate
diffusion effects. In porous media, including biological
tissues, there are often inhomogeneous fields due to mag-
netic susceptibility differences, with substantial change of
field over distances of the order of pore dimensions.
Especially at high measurement frequencies it may not be
possible to make 7 short enough to eliminate diffusion
effects. Although these diffusion effects are often a nui-
sance to be overcome, they can also be a source of infor-
mation on such parameters as pore dimensions or be a
source of contrast [4] in medical magnetic resonance im-
aging (MRI). Susceptibility differences may be intention-
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ally introduced by manipulating the susceptibility of any
phase of the porous medium or by introducing magnetic
particles [5,6].

Several groups [4,7,8] have made Monte Carlo compu-
tations of signal decay for gradient echoes, Hahn spin
echoes, or CPMG echo trains for systems with diffusion
through short-distance-scale inhomogeneous fields, and
in one case [4] the Bloch-Torrey [9] equations for NMR
with diffusion have been used to generalize the results of
the computations. It has been noted [10] that, for CPMG
measurements in some porous media, the T, ! vs 7 curve
has a substantial portion that is nearly linear. Brown and
Fantazzini [11,12] (references to be referred to as I and
II, respectively) have presented a heuristic model that ac-
counts for this nearly linear portion in terms of a distri-
bution of correlation times 7, for change of precession
frequency resulting from diffusion in local fields due to
susceptibility differences. The papers I and II provide
useful background for the present work, as do various
references [13—-23] therein. We will show that the corre-
lation times can be scaled for changes of diffusion
coefficient or for a linear scaling up or down of the di-
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mensions in the structure of the porous medium.

It is useful both in designing and interpreting measure-
ments to know how R (rate difference, R; in I and II),
which is defined as the contribution to T'; ! of diffusion
through local inhomogeneous fields, varies with frequen-
cy v, diffusion coefficient D, characteristic dimension of
pore space a, and susceptibility difference y between com-
ponents of the medium. Kleinberg, Farooqui, and
Horsfield [24] have shown that T, data showing surface
effects in porous media are easier to interpret when the
data are taken at low frequencies, where the effects of sus-
ceptibility differences are reduced. Several new NMR
logging instruments for oil wells operate at frequencies of
1 or 2 MHz [25,26].

It will be seen generally that magnetization decay
caused by diffusion in inhomogeneous fields due to sus-
ceptibility differences depends only on a diffusion time
a?/D and a dephasing rate 1xv in addition to echo time
for a given spin-echo measurement sequence and the
shape of the given pore space. The product & of this
diffusion time and dephasing rate will be a useful parame-
ter for identifying regions of different behavior of the
echo decay.

Both to show the general dependence of R on the pa-
rameters and for help in interpreting data taken in one
regime for use in another, scaling laws will be developed,
and both CPMG and Hahn single-echo measurements of
T; ! at three frequencies, with three liquids with different
diffusion coefficients, and in two relatively uniform
porous media, will be presented to illustrate the scaling.

II. THEORY

In I w is defined as the difference between the local pre-
cession frequency, as influenced by the susceptibility con-
trast of a porous medium, and the mean frequency o, for
each spin in a region of the pore system which is some-
what larger than the spin can diffuse through in measure-
ment times. We will follow the effects on 7', ! of the
diffusion through these frequency differences and see how
these effects depend on the susceptibility difference y be-
tween the pore fluid and the solid matrix (or equivalent in
the case of biological tissues), the measurement frequency
v, the diffusion coefficient D, and a characteristic length a
of a porous medium to be scaled up or down in dimen-
sions without changing the shape of the pore space. The
length a may be defined or measured in any consistent
manner for the porous media to be scaled.

It will be necessary to define a number of variables,
some of them both as dimensional quantities and also in
three different dimensionless forms. In all cases the sub-
script u (possibly following other subscripts) will indicate
that all time variables (including those in differential
operators, rates, or frequencies) are in units of a’/D.
The subscript v will always indicate that times are in
units of (%XV)*‘, and w will always indicate that times
are in uni.s of D({yva )72. In all three cases all distances
are in units of a. The coefficient 1 was chosen to give, for
our data, approximate unit value to a dimensionless rate
R, to be defined later. The length a can be any charac-
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teristic length of a pore system which may, at least con-
ceptually, be scaled up or down in size. It is the mea-
sured effective pore entrance radius for the present sam-
ples. We define the dimensionless ratio
E=7,/7,=1xva’/D and note that the time units for
subscripts u, v, and w are in ratios 1:67:£72, and we will
see that for £X 2 the behavior of single spin echoes devi-
ates from that for smaller £. It should be clear that the
value of £ depends on how the characteristic length a is
defined or measured and on the nature and complexity of
the porous medium. Thus statements about behavior in
certain § ranges, e.g., £ X 2, are likely to need to be adapt-
ed to individual measurement systems, depending on the
definition or measurement of a.

The symbol R will be wused for values of
1/T,(1)—1/T,(7—0) from CPMG measurements. The
90° pulse time 7 is half the echo spacing for CPMG mea-
surements or half the echo time ¢ for single-echo mea-
surements. Continuous time variables will also be called
t, but the context will make this clear. The asymptotic
slope of —InM (magnetization, echo amplitude) as a func-
tion of ¢ for single-echo curves will be called R, (for single
echo). Also, the quantities T3, T,, and T5 will be
defined. In all of these cases the subscripts u, v, or w may
be added with the meaning given above.

A. Scaling the Bloch-Torrey equations

We next note that » is a function of r/a which does
not depend on the scale length a. To see this we note that
o comes from local fields due to volume magnetization in
the solid framework of the porous medium and that di-
pole fields are inversely proportional to distance cubed,
namely, proportional to a 3, whereas the volume ele-
ments producing the fields are proportional to a>. Since
the fields are proportional to Yv, we can write
o(r/a)=1tyvo,(r/a), where w,(r/a) is dimensionless
and does not depend on Y, v, D, or a. We will ignore (or
separately take into account) relaxation in the bulk fluid
and at surfaces. Since we are concerned only with trans-
verse magnetization, and since we are not concerned with
the uniform precession at the mean frequency, we may
write the Bloch-Torrey equations for the magnetization
M under the influence of diffusion, following Torrey [9],
in complex form,
—ai/[gil=iM(r,t)(%xv)wv(r/a)+V-DVM(r,t). (1)

We now put this in dimensionless form by multiplying
by the diffusion time a?/D. We also express lengths (in-
cluding in differential operators) in units of @ and times in
units of a2/D. In the pore space D is assumed constant,
and the subscripts u, v, or w will indicate the dimension-
less variables throughout, giving

oM(r,,t,)

o =i(ixv)(a®/D)M(rx,,t,)w,(r,)

+V2M(r,,t,) . 2)

We see that the magnetization depends on r, =r,=r/a
and t,=Dt/a’ and the dimensionless parameter



2106

£=1lxva?’/D. In 1 it is shown that Lyv is roughly the
maximum frequency deviation produced by the suscepti-
bility difference . Thus, after precession for a time
a?/D, the maximum phase shift is about 37£. Note that
x and v appear only as the product yv, and @ and D ap-
pear only as the quotient a?/D. We now integrate over
the pore volume to see that the observed total magnetiza-
tion (M in the following) is a function of only the two
variables, £ and ¢,. We could, of course, use the variable
t, =&t without introducing an additional degree of free-
dom. We can vary the parameters Y, v, a, and D without
changing M (7, ) only as long as £ is held constant.

B. Distributions of correlation times

In order to scale parameters without requiring that &
be constant we must introduce some additional restric-
tion, model, or assumption. We first turn to the model
used in I and II, where we made the assumption that
there was a substantial range of correlation times, 7
[defined following Eq. (4)] for change of precession fre-
quency for spins diffusing through the variable local fields
with local frequency variation . It was necessary to as-
sume that the phase shifts at echo time for the various
spins in the pore fluids are either small or else have a
Gaussian distribution. We will in the present work con-
clude that the distributions are not Gaussian and, hence,
that the first of these conditions is required. In I the
correlation function F,, is defined,

Flt—t'N=F,(t,0)= [ [o(x(t))e(x(t"))dv dv" .
(3)
Thus F, is determined completely by the probabilities of
diffusing from the various initial positions to the various
final positions in the time ¢t —¢’. These probabilities are
governed by the diffusion equation, P /9t =V-DVP. We
assume perfectly reflecting internal surfaces in the porous
medium, although this is not strictly the case. We now
rewrite (3) and the diffusion equation in dimensionless
form, where, as before, the subscripts u, v, and w will be
used to indicate the dimensionless variables. If D is con-
stant in the pore space, the diffusion equation becomes
simply

9P _v2p. @
ot

u

We now see that F,(|t, —1,|) does not change its form
with a linear scaling of the porous medium or with a
change of the diffusion coefficient. As in I, F, is resolved
into a sum of exponential terms of the form
p;Q}exp(—|t—t'| /7.;), where the p; are signal fractions,
and where ; would be the rms value of w if there were
but a single correlation time.

Equation (23) of I gives the contribution of susceptibili-
ty differences Y to R for CPMG measurements, neglect-
ing some small terms,

R=3 p;Qir, f(r/1,),

. tanh(x)
fx)=1 ~ .
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We put this in dimensionless form by setting
Tow =D7g/a%, Q;=(ixyv)Q,, and R,=R,/E=R, /&
We now have

__RD 2
Rw_ (%XVG )2 ~2pi‘0‘iu7-ciu

(6)

ciu

The parameters p;, Q,,, 7., are now all properties of the
shape of the porous medium and do not depend on Y, v,
D, or a. Thus, for a porous medium with a particular
shape of pore space, R, is the same function of r,, what-
ever changes are made in &, v, D, or a. Equation (6) sug-
gests that it should be possible to plot

RD T
= V§ —=7 (7)
Y (iyva)? a? "

in order to overlay R(7) data taken with different values
of v, D, a, and y within the range of applicability,
Rr<<1.

C. Slopeof Rvs 7

In I it was shown that, for CPMG measurements, a
range of correlation times tends to give a substantial por-
tion of the R(7) curve that is nearly linear, making the
slope of the nearly straight portion of the curve a useful
parameter. It was shown that, for certain distributions of
T.; values ranging over a decade or more, the extrapolat-
ed 7— 0 intercept of the nearly straight portion could, in
principle, be either below or above the 7—0 intercept of
the complete function. In II it was shown experimentally
that, for a sufficiently simple porous medium, R(7) has
zero initial slope and then has a substantial nearly linear
portion before approaching a horizontal asymptote. If
we define B=0JR /37, we have

oR, 1 OR, B oR,,
BU = = —2— = ) = . (8)
aT, £ or, (3xv) o7,
From Eq. (6) we get
B =S PO | | =1y 2R ©)
i ciu a7

where f'(x)=df /dx, and B, depends only on the shape
of the pore system. In Egs. (8) and (9) we have defined a
dimensionless slope that involves the susceptibility
difference y. However, in most NMR work in porous
media we do not know Y, so we define a hybrid “practi-
cal” parameter [3,, also dimensionless,

3v=(1o—6v)‘2%§=(§><106)()230 . (10)

In ranges of the parameters where it can be measured,
the dimensionless slope, whether expressed as 3, or 3,, is
notably independent of v, D, and a. As can be seen from
Eq. (9), substituting a liquid with different D, or changing
temperature to change D, should not greatly affect the
slope of the nearly linear portion of R, (7,) or of R(7). If
any part of the porous system is paramagnetic or fer-
romagnetic, a temperature change might, however, affect
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£. Note that the relaxation rates of the bulk fluids and
the surface contributions to relaxation may change with
temperature; however, R is the incremental rate due to
diffusion in the local fields due to susceptibility
differences. If it is experimentally possible to scale the di-
mensions of the porous medium without changing the
shape of the pore system, this too should not change the
slope of the nearly linear portion of R(7) or R, (7, ).

The maximum value of the function f’ is computed
from Eq. (5) to be about 0.34; however, an assumed distri-
bution of correlation times ranging over a factor of 20
gives a substantial section with a slope of
Spfi=(f')=0.19£0.04, where f/=f'(v/71,;), with
the 7’s in any consistent units. We can now use 0.19 for
f' in Eq. (9) to relate the slope of the nearly linear por-
tion of R, (7,) to measured values of 3, if we have a sim-
ple porous medium with a relatively narrow range of 7,
values. The value of {f’) should be smaller, but the
nearly linear range longer, if there is a wide range of 7,
values. We now make the approximation

BU=2piﬂfv [ ={02){f')=0.19(w?) . (11)

We can use the measured value 3,=1.32 to be dis-
cussed in Sec. IV to get from Eq. (11) an estimate,
(w?)=~6.9.

D. Tentative Cauchy distribution of phases

In I it is shown that, for practical purposes, the field
variations due to susceptibility differences are limited to
about +1yB,, where B, is the static field of the NMR in-
strument. Correspondingly, the variation w of the local
angular frequency from the mean angular frequency o, is
limited to +1yw,=xmyv. Within these limits on » the
actual distribution in o depends on the nature of the
porous medium. The data to be presented here are for
porous media with relatively high porosity and with rela-
tively simple and uniform pore structures. As mentioned
in I, if much of the fluid is in well defined pores, as op-
posed to crevices and channels, there is likely to be a sub-
stantial volume near the centers of pores, where the field
is nearly uniform, with w=~0. In the extreme case of an
isolated spherical or elliptical pore the field is uniform,
but for the samples considered here the pores are very
well connected and therefore not isolated. Thus we may
assume that w is very small for at least half of the pore
space (near centers of pores) and that the distribution for
the rest tapers to 0 at o ==xmyv. This distribution would
have a central peak narrow compared to mxv and have
extensive tails. As discussed at length in I, Eqgs. (5)-(9)
require that phase shifts accumulated between echoes (for
CPMG, or at echo time for single echoes) by spins in
various parts of the pore space either be comparable to or
less than unity or else have a Gaussian distribution. The
above intuitive distribution of ® is clearly not Gaussian.
Furthermore, it will be seen that the asymptotic values of
R from CPMG data are not proportional to 7, <a*/D
and not proportional to 0,2 « y*v?, as required by Eq. (5).

We can get information on the asymptotic values of R
from the CPMG data themselves if they can be carried
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out to sufficiently large 7 values, as in I. However, we
can better infer the CPMG asymptotic values from Hahn
single-echo 7T, data. The logarithm of the echo ampli-
tude as a function of echo time ¢ =27 starts with zero
slope (neglecting decay from sources other than diffusion
through local fields) and approaches a region of nearly
constant slope — R after a time of the order of t=1/R,,
if this provides sufficient time for diffusion that refocus-
ing is not very efficient by echo time. This last condition
will be found empirically to be roughly equivalent to £ <2
for the present measurements and with the present
definition of a. The asymptotic rate for the CPMG mea-
surements and R should be equal. The refocusing pulses
cancel effects of fields that are inhomogeneous over
longer distances than spins can diffuse in measurement
times, but they are not effective at canceling phase shifts
due to diffusion in the local field @ and accumulated at
times sufficiently far away from refocusing pulses. The
single-echo measurements at a given 7 value have the de-
cay reduced by the refocusing. The approximately
straight part of the —InM curve is raised a fixed amount
by the refocusing if the effect of the refocusing is roughly
to cancel decay for a certain length of time. Thus the
slope gives the rate in the absence of refocusing of the
effects of the grain-scale local field o but with refocusing
of the effects of the larger-scale fields. Since the asymp-
totic rate for CPMG measurements of R(7) is also the
rate in the absence of refocusing of the effects of the
grain-scale local fields, the slope of the single-echo curve
gives the asymptotic rate of the CPMG curve for R(7),
and it can be determined reliably at much shorter times.

For the present measurements these asymptotic rates,
inferred from the single-echo data, are proportional to
the first power of v rather than the square, and they still
do not depend on a or D. This is compatible with the
above surmise that the distribution of » may have a sub-
stantial tail and suggests that the distribution of @ might
approximate a Cauchy distribution, [(w/R,)*+1)]7!/
(mR;), where R, is the half-width and which has statisti-
cal properties very different from those of a Gaussian.
Brown [6] has shown that this is the distribution that
would result from randomly placed dipole sources and
that it leads to the free induction decay exp(—R,¢). Fur-
thermore, it was made plausible by theory and confirmed
by experiment that diffusion does not affect the rate.
That is, motional line narrowing is suppressed, because
the distribution with the long tail leads to some large
phase shifts owing to diffusion, offsetting the effects of
averaging. Once again, the decay is reduced for some
time in the vicinity of the refocusing pulses, but the incre-
mental decay with increase of 7 is, at long-7 values, the
same as for free precession (“corrected” for larger-scale
field variations), and (for an ideal Cauchy distribution of
phases) it is independent of a2/D if the echo time is sub-
stantially larger than a2/D.

In Sec. IV it will be seen that, if £<2, R, =({xV)R,,,
where R, ~1 for the present measurements and depends
only on the shape of the pore space. This is equivalent to
R,, =R, (a’/D)=R,E~E. Thus R,t=R,t,~Et, for
our data. In time a?/D the decay is by about £ Np
(nepers, factors of e). The maximum value of |wl|, ap-
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proximately myv, is 9.4R;. To use these values to
get another estimate of (w?), we compute {w?)
= [34x2/(x2+1D)]dx / [ 3*[1/(x*+1)]dx =5.4 for the
Cauchy distribution truncated at the maximum |w|. The
two values of (w2 ), 6.9 and 5.4 are close to each other,
even though one comes from data for the short-7 regime,
where R is proportional to (%Xv)z, and the other from
data for the long-r regime, where R is proportional to
1yv. In the small-7 region, where |@l,,, S 1, only (@) is
significant in determining echo decay; the shape of the
distribution does not matter. However, assuming the
truncated Cauchy distribution also at small 7 gives
roughly the right width of the Cauchy distribution for
use at larger 7.

The free induction decay (FID) at time ¢ due to a Cau-
chy distribution of angular frequencies with half-width
R, and without diffusion is a simple exponential decay,
exp(—R,t). The effects of diffusion are not easy to ac-
count for in precise detail for an actual porous medium,
but it is instructive to consider the consequences of the
instantaneous random relocation (nonphysical) of all
spins at intervals of a time 7, (e for exchange). Of course,
the results of the actual diffusion are more complicated
than a periodic complete exchange, and, in particular, the
spins away from the centers of the larger pores probably
change fields more quickly that those near the centers.
The distribution of the results of n=t/7, random
choices from any distribution is an n-fold convolution of
the distribution. The Fourier transform (FT) of the n-
fold convolution is the nth power of the FT of the origi-
nal distribution. The logarithm of the resultant FT is n
times that of the original FT. Thus, for an untruncated
Cauchy distribution without exchange, the natural loga-
rithm of the FT would be —R z. With exchange, we
would have (—R;7,)t/7,)=—R t. That is, the ex-
change has no effect. We do not get the “averaging”
effect we would get with a Gaussian distribution.

If diffusion is fast enough that the missing part of the
tail of the truncated Cauchy distribution of phases would
have been sampled by most spins, including those near
centers of pores, then R, will be somewhat less than com-
puted from the full Cauchy distribution. As seen above,
the distribution 1is truncated at x,=9.4 times
its half-width. The normalized distribution is g(x)
=(2tan"!x) Wx2+1)"! for |x|<xy, and zero else-
where. The FT G(y) is given by a series expansion,
which is convenient for computation,

2k 1

Gy)=S 2 |1+
kgo (2k)!

k x3 1
tan”'x, ,g'l(_l)r(Zr-—l) ] ’

(12)
A semiconvergent series can be used for y(x% +1)>>1,
sin(xqy) _ 2cos(xyy)

Gy )me I+ e L(13)
Wime T i) yAxi 1)

The natural logarithm of the FT starts with zero slope
and then oscillates gently about the line —(y —y,), where
yo=In[m/(2tan"'xy)]. For x,=9.4, we have
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y0=0.070. Repeated sampling would still give straight-
line decay of the natural logarithm of the FID, but the
truncation of the phase distribution at x;, would reduce
the slope by the ratio G(y,)/Gy(y,), where Gy(y)=e ™
is the untruncated FT and y,=R,7,=R, &7, (with
R, ~1 for our particular data set). This ratio starts at
zero and eventually approaches 1.0. It reaches 90% at
y=0.5. To have decay of single-echo curves with at least
90% of the maximum rate, we need (for our data set)
&r,,20.5.

The smallest £ for our set of data is 0.031. To have
&t,,20.5 requires t,, = 16; that is, the exchange time
must be 16 times the nominal diffusion time a2/D. This
at first seemed unlikely, but we note that a is an effective
pore entrance radius (see Sec. III), probably smaller than
a pore radius. (It is not intended to imply that the pores
are spherical or that they are connected by cylinders.)
Furthermore, as discussed in I, diffusion over distances of
the order of a pore spacing would be required for many
spins to reach regions of highest or lowest fields, with the
times required going as the squares of the distances. A
further factor leading to long 7,’s is that diffusion is re-
stricted by barriers. The exchange times may be longer
than the longest significant correlation times, because
spins in pores, as opposed to channels and spaces between
pores, probably do not have to diffuse as far to lose corre-
lation as they do to have the appropriate probability of
visiting a region of highest |w|.

E. Arctangent fits to the data

In I it was shown that wide distributions of correlation
times led to R(7) that was well approximated by an
arctangent function. In II it was shown that moderately
narrow distributions could be fit by adding an exponen-
tial buildup term with time constant T,. Here, instead of
the exponential term, we will use another arctangent fac-
tor, giving much the same effect.

2 7T

7TT4

2 1|7 2 —
R~R, | —tan ! 57/ Ts —tan !

] a4

The expressions in square brackets are normalized to
range from zero to one, with the term in the first set of
brackets giving the initial slope 7/75;. The initial 7
dependence is quadratic, as required by Eq. (5). The
term in the second set of brackets gives a delay of T if
we have T, <<7<<Tj:

2 |7 T
R=R[7/T5] S 2,
st(T—T4)/T3:B(7——T4) > (15)

which represents the approximately straight-line portion
of the curve, where the slope is B=0R /07=R/T};.
Equations (14) and (15) can be put in dimensionless
form by multiplying by the diffusion time a?/D; the sub-
script u can simply be added to each symbol. However,
as has already been noted, R,, =&R,,. Equation (8)
shows that the slope of the linear portion (when there is
one), 8R,, /37, =Ry, /T, =£B,, giving T3, =R,, /(£B, ).
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We use 7,=D7/a* and T,,=DT,/a? Ileaving
7/Ty=71,/Ty4,. The parameters T,,, R,,, and 3, should
depend only on the shape of the porous medium. Equa-
tion (14) now becomes

R, ~ |22 tan~! | -T5
w ze B0 15 BT
.
X ltan”l 2 T (16)
T T Ty,

If 8,7, /R, <<1, the factors 2R, /(7§) cancel, and Eq.
(16) becomes

2 T

m T4u

—1

R, =fB,T, (17)

2
— tan
o

This is the regime for which experimental points for
different parameter values should overlie when plotted
according to Eq. (7). The overlay will not continue
beyond £B,7, /R, <<1, because £ then becomes a param-
eter in Eq. (16). Equation (7) then ceases to apply be-
cause of not meeting the requirement given in I of hav-
ing, at echo time, either a Gaussian distribution of phases
or else all phases <1. We now believe, as we have dis-
cussed above, that for most parameter regimes the Gauss-
ian condition is not even approximated; the second condi-
tion is essentially R7<<1. That is, there should be
several CPMG echoes in a relaxation time.

We have discussed single echoes for longer echo times
and for greater decay, although with the limitation that
£ <2 (with a defined as for our data). We are interested
also in echo amplitudes for £ R 2, especially for single spin
echoes, where we can follow the decay for one or two de-
cades per echo. We have tried using the equivalent of Eq.
(6) to compute { p?) beyond the range where R7<<1 and
then using the rms phase and assuming a Cauchy distri-
bution. However, this appears to be taking the combina-
tion of the model of I and the assumed Cauchy distribu-
tion of phases too literally; the results do not adequately
fit our data.

For a value of ¢, in the range of moderate decay, which
is 1<t¢,<6 for £<2 (for our data set), we note that in-
creasing £ at a fixed ¢, gives decreasing t, =t,/£. This
eventually leads to slower decay both because of more
complete refocusing of individual spins and because of in-
creased isolation of spins in regions of lowest field gra-
dients. For large £ and single spin echoes in porous
media we can expect a situation partially analogous to
the diffusion-limited surface effect, where relaxation is
determined by diffusion independently of the strength of
the surface effect so long as it is above some threshold.
Since t, =£t,, we can phase out a factor of £ (containing
the dephasing rate Lyv) as £z, becomes large by again us-
ing the arctangent function as a phase-out function and
multiply the InM (¢, ) by the factor

tan" /7, /Ts,

A (18)
V'1,/Ts,

By our convention 7, =&7, =&t, /2=£%, /2, and T, ap-
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pears to depend on shape only. The factor Eq. (18) =1 if
&t,/(2T5,)<<1. We saw that for £<2, —InM
=R, t,~t, minus a small delay. Multiplying this by Eq.
(18) gives InM =1/t for large &t,. Although this limit
does not explicitly involve v, it does indirectly, since we
have required that 7, be in the range for substantial de-
cay.

The asymptotic —InM for a compact single pore or
periodic pore system is not proportional to /¢, but sim-
ply proportional to ¢,. However, there is usually some
range of pore sizes and significant variation in the chan-
nels between pores. The decay factor exp(—1/t,) is the
Laplace transform of r ~3/2exp[ —1/(4r)], which is the
distribution of rates for exp( —v/ t,). If we convert to a
time x =1/r, with dr=—dx /x2, we get a distribution
proportional to (1/V'x )exp(—x /4). We are not con-
cerned with this distribution at short times, because
—InM is not proportional to —1/¢t, at short times. We
note that this distribution does not extend to implausibly
long times. In any case, Eq. (18) is a largely empirical ex-
pression that accounts well for the effects of moderately
large & for our data.

III. EXPERIMENT

The samples used in this work are microporous por-
celain samples (Selas Floctronics) with exceptionally
smooth pore surfaces, made with controlled pore sizes for
use as filter materials. The A samples have pore entrance
radii @ =0.6 um and the B samples a =1.5 um, deter-
mined from capillary pressures by the injection of mercu-
ry. Porosities are about 0.30 and 0.50, respectively. The
volume magnetic susceptibilities of the solid framework
materials (not of the macroscopic porous solid) are
Xa~+48.62X107 % and yp~ +45.48X 10" °. These are
in Systeme International (SI) units, dimensionless, but 47
times their values in the emu or Gaussian units often
used in tables. These materials are described in more de-
tail elsewhere [27]. It was necessary to use physically
different samples of the solid materials for the different
saturating fluids and for the two different NMR instru-
ments to be mentioned. Although the materials are ex-
ceptionally uniform, some variation is inevitable, and it
necessarily induces some scatter in comparisons of scaled
data.

The saturating liquids used were brine [27] and two
oils, Soltrol-130 [27] and Soltrol-170, made by Philips
Petroleum Co. The diffusion coefficients in (um)?/ms at
25°C are 2.14, 0.728, and 0.401, respectively. At 41°C
they are 3.178, 0.965, and 0.571. The volume magnetic
susceptibility, in SI  units, of the brine is
Xw=—9.062X107% and that of both oils is
Xs=—8.225X107% For brine in A, 10% =48.623
—(—9.062)=57.7. For B, 10°%=54.5, about 6% less
than for A. For either Soltrol x is about 1.5% less than
for the brine. Although y? is about 12% higher for A
than for B, the 3, values [see Eq. (10)] and also the R,
values (see Fig. 1) are the same for A and B within experi-
mental accuracy. We have therefore used the value of g
for both porous materials in order to overlay data points.
We do not regard 12% as a significant discrepancy, since
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the porosities of the two materials are significantly
different, indicating that the internal geometries are not
simply linearly scaled from one to the other. The 1.5%
smaller ) for the oil-saturated samples than for the brine
was still taken into account.

CPMG and single-echo measurements were made at
41°C with brine in B and with Soltrol-130 in B at v=20
MHz with a modified Bruker Minispec instrument [27],
which had the advantages of a relatively short (5 us) 90°
pulse width and which permitted recording 2048 echoes
in a CPMG sequence, thus allowing about 300 ms of data
even when 7=75 pus (150 us echo spacing). For this mea-
surement only, the internal surfaces of the porous medi-
um were coated with a water repellent material [27] in an
attempt to minimize any tendency of the fluid molecules,
particularly water molecules, to stick to the pore sur-
faces. The coating did not, however, greatly affect either
longitudinal or transverse relaxation times. The
Minispec measurements were made a year earlier than
the others, and the samples were from a different batch of
the porcelain.

CPMG measurements at 25°C using a variable-
frequency instrument [28] were made, using phase cy-
cling, at 10, 20, and 50 MHz, with all combinations of the
two porous solids and three fluids. The 90° pulse widths
at these frequencies were 14, 20, and 23 us, respectively.
Only 512 echoes could be recorded, limiting the length of
the recorded echo train to about 50 ms for 7=>50 us.

Longitudinal relaxation curves were run for all com-
binations of solids, liquids, and frequencies; relaxation
was substantially single exponential in all sample com-
binations and for both instruments. The stretched-
exponential a factor was 0.993+0.003.

As discussed in I and II, some special procedures are
needed in interpreting CPMG data as a function of 7
when relaxation is not a single-exponential decay. When
there is substantial relaxation by the time of the first data
point, there is no direct way to get information on ex-
ponential components with shorter times. We address
this problem by adding a virtual zeroth echo to each data
set. The echo No. 0 comes from extrapolation of the
echo trains with the several shortest 7’s, which for the
present data give very close to the same values. For a
sample with a narrow distribution of correlation times
and for 7 of the order of the correlation times it can be
seen from Eq. (19) of I that a small but non-negligible er-
ror is made by dropping a small term that is not propor-
tional to echo time. This error is, however, far smaller
than that using the CPMG data without the virtual
zeroth echo.

The relaxation data for the CPMG measurements were
fit by discrete sums of exponentials. In each case about
90% or more of the signal amplitude had T, values
within a range of a factor of about 3 if the components
contributing more than a few percent of the signal were
covered by the data for the particular 7 value. As men-
tioned, for the shortest 7’s the longest relaxation times
could not be covered, and coverage shorter than 27 is in-
herently unavailable for the long 7’s. The relatively nar-
row distributions of T,’s confirm the relative uniformity
of the solid samples. The distributions of times tend to be
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widest for smallest D, largest a, and largest v. This is as
expected, since short diffusion lengths, short relaxation
times, and large pore spacings give the opportunity for
spins to sample more isolated portions of the pore space.
It is the relative uniformity of the pore space in the
present samples that gives the opportunity to illustrate at
least roughly the effects of v, D, a, and .

We have taken for the relaxation time the time for de-
cay by a factor of 1/e, using multicomponent exponential
fits for interpolation. This appears to give the most
robust T, values available with the present experimental
conditions and objectives. We have avoided using T,
values comparable to or shorter than the first data time
or significantly longer than the longest data time.

Some of the T',’s are considerably longer than the data
recording time for the variable-frequency spectrometer
when the shortest 7’s are used. Especially for the
variable-frequency spectrometer, the 90° pulses are too
long to be neglected, or to permit reliable correction of
the T, data, for the shortest 7’s (50 us). We have made a
correction assuming phase locking during the pulses,
with relaxation at the rate 1/T,,=1/T,(r—0). This
presents obvious difficulties when R is large even for
small 7’s. Thus, although data were taken for 7 from 50
us to either 2.0 or 2.4 ms, some of these points must be
omitted from the data sets for the above reasons.

For all but sample A with brine the portion of the R ()
curve at small 7 preceding the roughly linear portion is at
least partly within the range of measurements. A non-
linear search was used to correct the data for the 90°
pulse width and, at the same time, to fit the corrected
1/T, as a function of 7 to the form shown in Eq. (16) for
the Minispec data and Eq. (17) for the rest of the present
work, where the data were not carried out beyond the
nearly linear portion of the curve.

IV. RESULTS AND DISCUSSION

Figure 1(a) shows the single-echo decay curves from
the variable-frequency instrument at 25 °C, with InM, the
natural logarithm of echo amplitude, plotted against the
dimensionless echo time ¢, =1yvt. The sets of points are

TABLE 1. Diffusion time, dephasing rate, and . The last
three column headings show the measurement frequency v
above the dephasing rate %xv. The rows show sample
identification (1 for brine, 2 for Soltrol-130, 3 for Soltrol-170)
followed by the diffusion time a2/D. The remaining table en-
tries are & =%xva2/D, which is the product of diffusion time
and dephasing rate.

a’/D 10 MHz 20 MHz 50 MHz

Sample (ms) 0.182/ms 0.363/ms 0.908/ms
Al 0.168 0.031 0.061 0.153
A2 0.495 0.090 0.180 0.449
A3 0.898 0.163 0.326 0.815
B1 1.051 0.191 0.382 0.995
B2 3.091 0.561 1.123 2.807
B3 5.611 1.019 2.039 5.097
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arranged in the order of increasing £, starting from the
bottom, with the specific order shown in the figure cap-
tion and the £ values shown in Table I. With the excep-
tion of the top few sets of points, those with £X 2, the
straight-line portions of the InM curves all have slopes of

FIG. 1. Single-spin-echo points, with InM, the natural loga-
rithm of echo amplitude in nepers, plotted against ¢, = %)(vt (di-
mensionless), where t=27=echo time. The curves are shifted
vertically for display. The curves are, from bottom to top,
shown in increasing order of £= Lyva®/D, ranging from 0.03 to
5.1. Individual £ values are given in Table I. The sample-
combination sequence is All, A12, A21, Al5, A31, A22, Bl11,
A32, B12, A25, B21, A35, B15, B31, B22, B32, B25, B35, where
A indicates the porcelain material with measured pore entrance
radii a =0.6 um and B with ¢ =1.5 pum. The middle symbol is 1
for brine (D =2.14 um?/ms), 2 for Soltrol-130 (D =0.728), and
3 for Soltrol-170 (D =0.401). The last symbol is the frequency
in MHz divided by ten. (a) shows all 18 data sets as measured.
Note that, except for the top three to six sets of points, those
with £ 2, the asymptotic slopes — Ry, are close to —1. (b) all
displayed points for the data sets with largest £ values are divid-
ed by the functions in Eq. (18) to compensate for the effects of
large &, using 7’5, =5.0.
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approximately —1, corresponding to R, =~1. The nu-
merical value of this slope, of course, depends on the
choice of coefficient in defining the dephasing rate yv
used in defining #,. However, the fact that there are sub-
stantial sections of the InM curves that are approximately
straight and that the slopes are roughly equal for a wide
range of values of a, D, and v support the hypothesis,
presented in Sec. II D that the distribution of phases at
echo time is approximately a Cauchy distribution rather
than a Gaussian.

Figure 1(a) shows InM values just as they are mea-
sured, except with vertical shifts for display convenience.
The diagonal lines with slope —1 are for comparison
with the sets of points. Note that the sets of points ap-
proach asymptotes parallel to the diagonal lines except
for the top few, those with £ 2. Here, the slopes are
significantly less than for smaller &, and furthermore,
there is a tendency for the slope to decrease after a region
of maximum slope. For instance, for the top curve (B35)
the slope is about twice as great at ¢,=2.3 as it is at 6.0.
This is expected, since much slower diffusion leads to
smaller frequency changes during diffusion and to more
complete refocusing. Spins that start near centers of
larger pores may be efficiently refocused before diffusing
to regions of more inhomogeneous fields. At the other
extreme is sample All, £=0.031, which has about the
same slope as the rest of the curves. As mentioned in
Sec. IID, we must assume that exchange times due to
diffusion are at least 16a/D. There does not yet appear
to be significant motional narrowing, but still smaller &
values would presumably lead to longer decay times than
would be computed from the untruncated Cauchy distri-
bution.

Figure 1(b) shows the points, with InM divided by the
“correction” factor Eq. (18), attempting to compensate
for the effects of the larger £’s. Note that all sets of
points now approach approximately the same slope. The
effectiveness of this compensation suggests the plausibili-
ty of phasing out a factor of & as £z, increases. It would
be better tested if our data went to larger &.

In Figs. 1(a) and 1(b) it can be seen that InM at echo
time is roughly quadratic in ¢, for ¢, <1. The decay by
t, =1 is a little less than 0.5, and the straight-line portion
extrapolates to a little more than 0.5 Np above the value
for 7—0. Actually, as can be seen from Egs. (16) and
(17), the initial dependence is cubic for a short time
t,=2r,=2T,,=2ET,,, where T,, =0.06 for our data.

Parameters from CPMG measurements, such as T,
and f3,, should apply roughly to the single-spin-echo
curves when the distribution of CPMG relaxation times
is fairly narrow, as it is here.

For those of our data which are in the range for Eq.
(15), which includes some points for all sets but those
with the largest £’s, we can see from Eq. (15) that, with
the assumption of small phase shifts for the first echo,
—InM =~0.5 is about the amount of decay where the as-
sumption of small phase shifts ceases to be valid and
starts to lead to an overestimate of the decay if the phases
have a Cauchy distribution. For T, <<7<<T;, Eq. (15)
gives us, after some manipulation of units, —InM
=‘;'<(P2> :%thu(tu —28Ty, )z%ﬁu(tu —&Ty, )>. For de-
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cay by 0.5 Np we have t,=p8, '>+£T,,, with B,=1.32
and T,,=0.06 for the present data. The actual time
would be slightly longer because of the long-tailed distri-
bution of phases “wasting” a small portion of its comput-
ed (@?) on “overkill.” In any case the agreement with
the behavior in Fig. 1 is good.

We get 3, =435 from CPMG data at 25 °C for all com-
binations of sample, fluid, and frequency for which f3, can
be measured by the variable-frequency instrument. In
Eq. (7) D /a? ranges over a factor of about 33, so that for
Soltrol-170 in B one may expect not even to reach the
linear portion of R (7), making it difficult to estimate f3,.
For these reasons the best measurements of 3, can be ex-
pected for the largest D with the smallest a and v, that is,
for brine in sample A at 10 MHz. Good measurements of
[, were obtained, all within 2% of the above value, for
brine in A at 10 MHz and at 20 MHz, for Soltrol-130 in
A at 10 MHz, and for brine in B at 10 MHz. The
remaining measurements do not cover the nearly linear
portion of R(7) as well as these do; however, values
within about 10% were obtainable for all A combinations
except with Soltrol-170 at 50 MHz and for B only with
brine at 10 and 20 MHz and (marginally) with Soltrol-130
at 10 MHz. As can be seen from Table I, these corre-
spond to the combinations for which £ <0.7.

For the earlier Minispec measurements at 41 °C on the
sample which had been made water repellent and which
came from a different batch of the material, 3, was about
18% less. The material is paramagnetic, but the temper-
ature difference would appear to account for only half of
the 18% if magnetization is proportional to K ~ 1.

Figure 2 shows plots scaled as indicated in Eq. (7) for
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FIG. 2. CPMG data for porcelain B treated for water repel-
lency and saturated separately with brine and with Soltrol-130
at 41°C. The ordinate is R,=RD /( %)(va)2 (dimensionless),
and the abscissa is 7, =D7/a” (dimensionless). The two data
sets are fit by Eq. (16) with R,,=0.845, pB,=1.096,
Ry, =pB,/R,, and T,,=0.06. For the upper curve (brine, cir-
cles) £=0.257 and for the lower curve (Soltrol-130, squares)
£=0.847. The value of R,, is derived form the slope of the
single-echo data (not shown for these two samples). The small-
t, region is expanded in the inset.
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brine in sample B and for Soltrol-130 in B at 41 °C. These
Minispec data provide adequate coverage for short 7
values. The D ratio of the two fluids is 3.29, so the brine
point for 7=75 us is midway between the Soltrol-130
points for 200 and 300 us. The two curves agree in both
amplitude and slope over the short region of overlap.
The two data sets are processed independently without
any inference of parameters from either for the other.
The solid curves, however, are derived from the same
values, R, =0.845 (from single-echo data), B,=1.096
(from CPMG data), and T5,=R,,/B,=0.77, together
with their individual values of £. The scaling rule of Eq.
(7) appears to fit precisely for the range where
7/Ty=€&1,/T,;<<1. The complete fit, Eq. (16), is very
good for the brine-saturated sample, for which £=0.257
(not in Table I, which is for 25°C). The fit is less good,
but not wild, for the last two points for Soltrol-130, with
£=0.847. Not surprisingly, a better fit can be made indi-
vidually, without reference to R, from single-echo data
and without imposing exactly the same 3, on both cures.
In this case the values of T; increase slightly with in-
creasing a%/D.

Data from the variable-frequency instrument are
shown in Fig. 3 with all valid points for all combinations
of porous samples, liquids, and frequencies. The range of
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FIG. 3. CPMG data (ordinate and abscissa as in Fig. 2) up to
and including the nearly straight portions of the curves for 25°C
for all combinations of solid material, saturating fluid, and fre-
quency. In the central plot symbol size decreases with increas-
ing £ down to a minimum size. The large circles are for All,
the large squares for A12, the large triangles for A21, and the
diamonds for A15. The solid curve is Eq. (17), with 8,=1.32
and T4, =0.06. The scale of the upper inset is expanded to
show both A and B points for intermediate 7,, with A points
shown as solid circles. Large circles are B11, large squares B12,
triangles B21, and diamonds B15. The lower inset is further ex-
panded to show the transition region between quadratic and
linear dependence of R, on 7,, again with the A points shown
as solid circles. The small solid triangles are B35, the small
open triangles B25, the small diamonds B32, and the small cir-
cles B22. The large triangles are B31, and the large squares are
B12.
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7, is over a factor of 400, so only a small fraction of the
points can be shown clearly in one plot. As can be seen
from the central plot in Fig. 3, R, (7,) is roughly linear
over a factor of about 40. All of the points with 7, >0.6
are for sample A. To minimize the problem of plotted
symbols hiding each other, the symbols decrease in size,
down to a minimum, as § increases. The upper inset in
Fig. 3 shows the range covered by points from both A
and B, with the A points all shown as filled circles. The
plot of the dimensionless parameters, scaled for substan-
tial ranges of D, a, and v, forms a single smooth curve
within the accuracy of the measurements. The lower in-
set in Fig. 3 shows a still more expanded plot, with the
same symbols as in the upper inset. There is still good
overlay of the scaled points. There is some scatter, and
the A points tend to be slightly below the B points. How-
ever, as mentioned, there is some uncertainty in the ex-
trapolation of R (7,) for 7, —0, and the pore structure
of B is not a simple linear mapping of that of A.

V.SUMMARY

CPMG and single-spin-echo data have been taken over
substantial ranges of v, @, and D. The results are compa-
tible with the general feature of the model of I and II,
which predicts that R, is a function of 7, if RT7<<1.
The results are also compatible with the more specific
feature, where a distribution of correlation times leads to
a substantial nearly linear portion of R, (7,) or R(7).
Limitations of the model for R7<<1 are discussed in I
and II. In more complex porous media CPMG relaxa-
tion times may span several decades, however short 7
may be. It was shown in II that for a porous sandstone
the 7 dependence of R was very different for the long re-
laxation time components than for the short ones. Any
scaling of parameters must be considered separately for
different parts of the relaxation time spectrum. It is to
make more interpretable comparisons of single-echo and
CPMG measurements that we have chosen the porous
porcelains, with their relatively uniform pore structure
and relatively narrow spectra of T'; and T,.

For a relatively homogeneous porous medium with a
narrow distribution of transverse relaxation times the
single-echo InM curve approaches a nearly constant
asymptotic slope — R if £ <2, and R; is also the asymp-
totic value of R(7) for CPMG measurements. For this
asymptotic region, R, (=&?R,)) is found to be propor-
tional to £ rather than to &2, as would be predicted by the
model of I. As discussed in Sec. II D, assumption of a
truncated Cauchy distribution of phases would give the
observed first-power dependence on &, and the second
moment of the truncated Cauchy distribution derived
from single-echo data at t, =27, >>1 is compatible with
that derived from CPMG data at 7, <<1. The observed
lack of dependence of R,, on a?/D is also compatible
with this assumption.

The slope of the nearly linear part of R(7) for the
CPMG data is independent of @ and D for R7<<1. The
asymptotic value of R(7) is also independent of ¢ and D
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if £<2. Equation (16) appears to represent R, (7, ) ade-
quately for any value of 7, if £ <2.

For £%2 the pattern deviates from that for lower &.
The factor in Eq. (18) appears to account for this, gradu-
ally shifting the time dependence from ¢, to V/t, as &t,
increases and a diffusion-limited regime is approached.

The data interpretation makes use of the four non-
NMR measurements, a,D,Y,v, which are used only as
the dephasing rate lyv, the diffusion time a*/D, and
their product £. The single-echo and CPMG data are in-
terpreted in terms of four NMR-derived quantities (and
the above non-NMR quantities): f8,,T4,,R,,Ts,, all of
them functions only of the shape of the pore structure.
These are adequate to describe the effects of susceptibility
differences and diffusion for our 18 sample and frequency
combinations, with CPMG data as functions of 7, and
with single-echo data as functions of t =27. We also dis-
cussed an exchange time 7,, X 16 associated with the va-
lidity of the Cauchy distribution of phases for our small-
est § value.

We were surprised to find that the distribution of
phases for our porous porcelains approximates a truncat-
ed Cauchy distribution for the FID and for spin echoes.
However, a number of systems of interest are known to
produce truncated Cauchy distributions of magnetic
fields, including dispersed magnetized particles [5,6] used
as contrast agents in technologies as different as oil well
logging and medical MRI. These systems can be scaled
as described above. For particles that are ferromagnetic
the magnetization can be substituted for yv, and grain ra-
dius or diameter can be the parameter a. The exchange
time would presumably be related to the distance between
particles. In any case our model and scaling laws are not
shape specific except for dependence on the Cauchy distri-
bution of fields. Any sources of dipole fields (either three
dimensional or two dimensional) give a truncated Cauchy
distribution of fields. One could have such fields from
globules of one material, such as oil or fat or air,
dispersed in another of different magnetic susceptibility
and also from cylinders, such as blood vessels containing
a contrast agent and subject to a transverse component of
a magnetic field [29].

The additional transverse relaxation rate R from
diffusion and susceptibility differences can be both a
source of interference with measurements of transverse
relaxation from other sources and also a possible source
of useful information in porous media and of contrast in
medical MRI. A knowledge of the scaling laws can be
useful for both designing and interpreting NMR mea-
surements.
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